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Analysis of Scattering and Radiation of Acoustic
Waves From an Axisymmetric Structure in an
Infinite Fluid Medium

Introduction

Determination of the acoustic radiation from a vibrating surface in an infinite, inviscid fluid
medium requires solution both of the equations of motion of the structure and of the Helmholtz
equation for the velocity boundary condition normal to the structure’s surface. However, the
availability of an exact solution of the Helmholtz boundary value is usually precluded because most
structures of interest have a complicated surface geometry. As a result, the solution of acoustic
radiation problems has generally employed two alternative approaches.

In the first approach! the structure is contained within a sphere, and everything within the sphere is
regarded as the structure. The surrounding fluid is idealized by fluid finite elements, and the structure
is idealized by structural finite elements. The exact solution of the Helmholtz equation for a spherical
cavity in an infinite medium is available, and this solution is coupled with the solution for the fluid-
structure finite element sphere.

In the second approach? the integral equation solution of the Helmholtz boundary value problem
is derived. This ‘‘surface Helmholtz integral’’is derived from the conventional Helmholtz integral for
a field point exterior to the cavity by a limiting process in which the field point approaches the sur-
face.

Use of the first approach requires solution of a large fluid-structure finite element problem
whenever a long, thin structure is to be analyzed. Use of the second approach yields a nonunique
solution in the case where the excitation frequency is within a certain bandwidth around the natural
frequency of the interior Helmholtz problem. Two distinct methods 34 are available to alleviate these
difficulties. Although they are not detailed here, these methods are incorporated in the computer
program.

In earlier works23:5 on the solution of the Helmholtz surface integral, it is assumed that pressure
and velocity over each ‘“finite surface element’’ are constant; that is, each finite surface element acts
as a piston. Our analysis gives the relation between pressure and velocity at the centroid of each finite
surface element. The total set of finite surface elements constitutes the total fluid surface area in
contact with the structure.

In the earlier works, the response of the structure (normally given at the nodes) and the pressure-
velocity relation obtained at the centroids of the finite surface elements are made compatible by in-
terpolating the response at the node points from the response at the centroids, However, since most
structures are analyzed using the finite element method, it seems appropriate to divide the fluid
surface and the structural surface in contact with each other by the same network of grid lines. In this
way, each of the finite surface elements has a counterpart structural finite element on the structural
surface. (Previous works do not impose such a restriction.) We can then further require that the
velocity and pressure distribution on both sets of elements be consistent. In essence, then, we choose
to view the fluid-structure interaction problem as simply an extension of the finite element analysis of
structures. This is the new feature examined in this study.
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The results obtained thus far show that, for a given criterion of accuracy, the number of finite
surface elements required to solve the Helmholtz surface integral is less than that required for
structural analysis. This assures us that the finite element model of the structure and its counterpart in
fluid is sufficient for determining structural response in an infinite fluid medium.

Although the algebraic development of the work here is restricted to an axisymmetric case, the
method can easily be extended to the nonaxisymmetric case.

Analysis

The following analysis is divided into three parts. The first part deals with the numerical solution of
the Helmholtz surface integral, the second describes the equations of motion of the structure in the
fluid, and the third deals with the response of the structure and scattering of the incident wave train
along the axis of symmetry.

Solution of Helmholtz Surface Integral

Radiation from an inclusion in an infinite fluid medium is described by the boundary value
problem where the Helmholtz equation represents the field equation:

(V2+k*)p(x) = 0 1
subject to the Sommerfeld radiation condition at infinity:
Lin R@R - 1kp) = 0 @)

and the pressure p(x ') and velocity v,(x ') normal to the surface prescribed on the inclusion surface.

The solution of the above boundary value problem is given by the Helmholtz integral

1 1 9 eikR eikR
PG’ = o= j; (P = (E=) - ikpresv () } da, )

R R

where (see figure 1):

X°, x define the vector from the origin of the coordinate system to the field point A and the vector in
the fluid to the general surface point B, respectively

n is the exterior normal to the surface at point B

R = [x"-x|

V(x) = velocity vector of point B

Va(x) = Y(x)*n = component of V(x) normal to the surface

k = w/c

Vv = Laplacian operator
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= frequency of excitation in radians/sec

o
It

velocity of sound in the fluid

mass density of the fluid .

o
il

Figure 1. Schematic for Helmholtz Integrals

The Helmholtz integral (equation (3)) gives the pressure at a field point A for the case in which the
velocity and pressure distribution on the inclusion surface are given. The prqblem addressed here is—
given a velocity distribution on the inclusion surface, find the corresponding pressure distribution on
the surface. This was obtained from equation (3) by considering the limiting case where the field point
A(x' ') approaches the surface point C(x ). This case is considered in detail by Chertock2, where the
resulting expression, called the Helmholtz surface integral, is an integral equation for p(x ') when |
V,(x) is prescribed:

e1kR
p(x') = ] (pio & E)  tkpey (0 S ) an @

A

where the asterisk (*) over the integral means that the principal value of the improper integral is to be
taken on the total surface A. Note that as R0, the integrand exp(ikR)/R—>%0, which accounts for the
difference between the integrals of equations (3) and (4). !

The actual shapes of structures normally encountered rarely conform to the shapes (sphere,
cylinder, etc.) for which the exact solution of equation (4) is available. As a result, numerical analysis
in which the surface is divided into a set of finite surface elements is used. Assume that the total fluid
surface is divided into J number of *‘finite surface elements’’; then the pressure at a grid point C(x ') is
given by

J  *
ikR ikR
! L 2 ¢ ®)
p(x’) = 2m Z j:\j {p(ij) on R n R g
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If the pressure and velocity over each ‘finite surface element’’ are regarded as constant (which is the
usual assumption), p(x;) and V(x;) will drop out of the integral sign, so that

J
p(x') = 2“1n' z {plx,
i=1

Note that x ' is the centroid of a particular finite surface element and R = |x'-xj|. Also, it should be
clear that both of the integrals in equation (6) will have to be evaluated numerically.

*
ikR

_n (_--.) dAj - Vv (x )I ikpe .. R dAj}- ©

\”‘_

Aj

As mentioned earlier, the method under consideration here employs the consistent distribution
approach. In the finite element method, the displacement at a point within a particular plate finite
element is described by a basis-function (normally a polynomial in local coordinates of the order such
that the number of coefficients of the polynomial equal the total number of variables available at the
total number of grid points describing the finite element). Consider, for example, the triangle
described by three grid points 1, 2, 3 (see figure 2).

Y

vy
Vo

t o

Figure 2. Definition of Coordinates of Plate Finite Element

The terms U,, U,, U, (the displacements normal to the plane) and the two rotations at each grid point
that can produce the normal displacement of the plate account for the total of nine variables.
Utilization of these nine variables allows us to select a polynomial in two dimensions (x,y—which is
the local coordinate system of the triangular plate) with nine coefficients:

=0, +C0,x 4+ 0oy + C,x7 +C.xv + C,v +Cox' + C(x
u, Cl 9% (3y (Ax (va (6V (7x + (H(x vixvo) 4+ Cov

These nine coefficients can be expressed in ierms of nine known quantities. Without deriving the
expressions explicitly for the coefficient C;, we will write u, in matrix notation:

L R e e T VP

——..




9
u = z a,(x,v) u, = ;llu’ (7)
7 o i :

where a;(x,y) are the polynomials in local coordinates x,y, and

Selection of the basis function for an axisymmetric conical shell element is detailed in appendix A.

Note that the nonlinear variation of the displacement in the previous example requires not only the
displacements at the grid points, but also the rate of change of the displacements. Since the general
purpose computer programs based on the finite element method always give the translational and
angular velocities at the grid points, the use of nonlinear distribution does not require any change to
the existing computer programs. This is not the case with the pressure distribution problem. Equation
(5) gives pressure information only, whereas for the nonlinear pressure distribution case, we also need
the rate of change of pressure at the grid points. To obtain this information, we will differentiate
equation (5) with respect to the local spatial variables:

*

}
3 .1 2 | a7 o TKK SR
9 Sty o= A . L N 1ok ) =2 (Y A
T p(x") >n ‘ {p(xj) YT ( =) lkOC\n(xi)Sr S YEAA], (8)
k i=1  Aj K k
where
k=12

ny, t;, t, form a local right-hand coordinate system at point C(x ')
n is the normal to the surface at C(x )

t;, t, are tangent to the surface at C(x ') and are at right angles to each other. Either t, or t,
(whichever is convenient) is fixed to define the local coordinate system (see x,y,z coordinate system in
figure 2); the remaining axis should form the right-hand system.

Then, with both p(x') and 3/(dtp)ep(x ') known at the grid points, an interpolation function
(corresponding to equation (7)) can be written for the pressure.

In accordance with the notations used in equation (7) for the consistent distribution, let us define
pressure and velocity for the jth *‘finite surface element’’:

p(}_i) = a_ P,
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where ! refers to the variable defined in local coordinates.

In the analysis we also considered the second case in order to see how much difference (if any) the
linear distribution of pressure over the *‘finite surface elements’’ would make. In the linear case, the
first set of equations of equation (9) will change:

p(x.) = (:’
j :

(x)

(10

To increase notational flexibility, we will use equation (10) for both cases, with the understanding that
for the consnstem distribution case (“jT = gT and that for the linear pressure distribution cases,

pressure vector P will have halif the number of elements in the vectors in equation (9) required for the
consistent dlstnbutlon caseand gl # al.

Substituting equation (10) into equations (5) and (8), we get

S

=1

—

*

Aj

*

[[[ 9;

f ']‘
c.
Aj )

an

a?

#n)t

e'ikR
(% g )dA]

ikR

] P% + [-ikp(‘

("—")dAJ] Pi’ + [—1kpc

[

Aj

j at

9
k

(

. %
dAJ} Xj] (i

ikR
__)dA]] yi} M

(12)

e

Appendix A provides the details of numerical integration to be performed in evaluating the above
integrals. Collecting the terms in proper order, we can write equations (11) and (12) in matrix

notation:

{p} =
n

[Hl{[’n

b+ [Gi{v }.
n

13

In the above equations, n indicates that we are dealing only with the components of pressure and
velocity normal to the surface.

Let [E] be an identity matrix of the size of [ﬁ]; then we can rewrite equation (13) in convenient

form:

where

{H} =

[E) - [H].

[E]{Pn} = [ﬁ]{Pn} + [c]{vn}

[te1 - ]2} = te1ev )

[H]{Pn} = [c]{vn},

(14
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Equations of Motion of the Structure

The equations of motion of a structure idealized into a finite element model are written in matrix
notation as

(M}{x} + [K){x} = {Fe} + {Ff}, (15)

where

[M] is a mass matrix

[K] is a stiffness matrix

{x} is the vector of generalized displacement

{F.} is the vector of generalized mechanical forces

{F;} is the vector of generalized fluid pressure forces normal to the surface .

In practice, stiffness and mass matrices of a structure are assembled by (1) writing element stiffness
and mass matrices for each finite element in their local coordinate system, (2) transforming all
element matrices individually in the global coordinate system, and (3) arranging and assembling all

the matrices in final form.

A generalized set of displacements {u} of a material point of a jth finite element is described by a
matrix of basis functions:

{uy = @{uly,
where
{u} is the (r x 1) vector of the generalized displacements, r<6
[a] is the (r x k) rectangular matrix of basis functions

{U 4 } is the vector of (k x 1) elements, where k = the number of generalized coordinates defining
the finite element.

Using the energy principle, we can derive the element mass matrix:
T
M1 = [ ora) (alavy,
where Vs
V; is the volume of the finite element

¢ is the mass density of the finite element .

The mass matrix, as defined above, is the consistent mass matrix; however, a lumped mass model
can also be used. The difference between the two mass matrices is significant. In the consistent mass




N
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matrix, the deformed configuration used is the same as the one used to derive the stiffness matrix. The
lumped mass approach uses a discontinuous deformed configuration in which several parts of a
particular finite element tend to vibrate as pistons, each with different amplitudes. The advantage of
the consistent mass matrix is that it requires the structure to be divided into fewer finite elements than
does the lumped mass approach. The disadvantage is that the consistent mass matrix is nondiagonal,
and most of the eigenvalue routines available accept only the diagonal mass matrix. However, since
the problem we are concerned with uses the inversion routine, our use of the consistent mass matrix is
not a disadvantage. From the previous discussions, it can be seen that the pruposed plan to use
consistent velocity and pressure distribution to solve the Helmholtz surface integral is a simple ex-
tension of the idea which led to the development of the consistent mass matrix.

The generalized torces can be obtained using the virtual work principle. Equating the total virtual
work done by the mechanical forces and the generalized forces, we get for the jth finite element:

3\ Tset) -
(7 1TV} - ];j PUx, )6V, (x)) s, |

where S; is the surface of the finite element.

Substituting the expression for p and V, from equation (10), we get
(x.)8V _(x.) dsj = { {Pl}T[C 1{a,174d Hevhy
J, PV, ;) dos £ TR s R
] |
which results in
b 1L e ey -
{an} s, [aj][cj] S {PJ.} [Aj]{Pj}.

The matrix equation of the generalized forces for the entire structure can be written by properly
arranging the above element generalized forces:

{Fra} = [A}{P,}. (16)

This expression gives the normal generalized forces in terms of the normal pressure vector.

As explained later in the Solution of Coupled Equations section, we can write
{P,} = [T](B]{P}

{F} = [T][B]{Fy}.

7
Substituting equation (17) into equation (16), we get "
{F¢} = [BIT [TIT{A][TI[BI{P} . (18)
Substituting equation (18) into equatién (15), we get
MG+ K1 = (F )+ (81T Al (Tl (81 (RY (19)




Interaction of the Fluid and Structure

In discussing the interaction of the fluid and structure, we will first consider a simple scattering
problem.

Scattering

Before we deal with the solution of equations (14) and (19), let us consider the case where a train of
harmonic plane waves traveling along the axis of symmetry impinges on the structure. Superscripts i
and s refer to the incident and scattered waves. p',v' are the incident pressure and velocity vectors.
ps,v* are the scattered pressure and velocity vectors.

Let Xi = voej(kx-mm)i_x = viix
XS - VSE (20)
p=p +p° Q1
v* = viwn + V5 (22)

p,v" are the total pressure and velocity vectors normal to the surface of the structure. i, n are the
unit vectors, respectively, along the axis of symmetry and normal to the surface.

Scattered components of pressure and velocity, p* and v®, satisfy the Helmholtz surface integral,
yielding

(H1{P°} = [G1{v®}. (23)

Incident pressure and velocity are related by the equation of motion

E = Eli. . (24)
Pt Tot ax
PL PL"‘ pt.xdx
— o

For harmonic velocity distribution, it can be shown that
i
Pr(x,t) = - cpvi(x,t). (25)

Equation (22) relates only the normal components of velocity.
Let
in

i
yo=v

0
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where v? is the component of velocity of the structure normal to the surface of the structure. Now we
can rewrite equation (22) as

v =V + v . (26)
Substituting equation (26) into equation (23), we get
{(p°} = TGV} (1™, @7
And substituting equations (25) and (27) into equation (21), we get

. -1 _ :
(o} = - cp v} + (HT'[G1WI® - (W] e1(v ™). 28)

The analysis of an incoming plane wave at an angle to the structure is given in appendix B. Ap-
pendix C discusses further the scattering of the plane wave from rigid and flexible structures.

Solution of Coupled Equations

We are dealing with acoustic pressure which, by definition, is a small variation in some uniform
pressure field. This precludes any possibility of cavitation in the fluid near the structure, and we can
assume that the velocity of the structural surface is the same as the velocity of the fluid at that point,
and that the pressure exerted on the structural surface is the same as the pressure in the fluid at that
point. It is this condition of continuity of pressure and velocity that couples equations (14), (19), and
(28).

Before we couple these equations, the pressures and velocity vectors of equations (14) and (28)—
which consider only the normal component of velocities of the grid points located on the surface—
will have to be transformed to the generalized force and velocity vectors of the entire structure in the
basic coordinate system. The set of grid points on the surface of the structure is the subset of all the
grid poiints on the structure. Also, the pressures and velocities in equations (14) and (23) that are
normal to the surface of the structure will have to be transformed to the basic coordinate system.

Let [T] be the transformation matrix relating the normal variables to the variables in the basic
coordinates. Since it is obtained by rotating each of the local variables, the resulting matrix [T] is
orthogonal. After the variables of this subset have been transformed to the basic coordinate system,
the subset must be related to the total set. Conceptually, this is performed by a rectangular matrix [B];
for example, to relate the vector [Xl} to vector X

3

we can devise the matrix shown below.
X1 . [1 0 o] *1
1{ = X .
{x ] 001J1*
3 x3

Although we will retain the matrix [B] (defined above) in this work, in practice the matrix that [B] is
to be expanded to (by inserting proper rows and columns of zeros) is used.

From the above, then, we can write

{v } = (TI~®} = [T][B]{v}. (29)
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Similarly,
fp } = [T] {B1{p}. (30)
Substituting equations (29) and (30) into equation (14}, we get
[T1(8){P} = (HT'[GI(T][B]{v}.

Since [T] is orthogonal, i.e., [T]! = [T]T, the above equation reduces to

(81T(B1{P} = (B1 ()T (HT [CI(TI(B] ).

(B]T[B] is a diagonal matrix with unity along the diagonal, except for the points (corresponding to the
interior points of the structure) on which there is no fluid pressure and which are zeros. In fact, if the
above equations are written out explicitly, both sides will be identically zero for the interior points. In
what follows we will replace [B]T[B]{P} by {P}, with the implicit understanding that the new vector
includes the pressures at the surface points and the interior points, and that the pressure at the in-
terior points is zero.
We now write
e} = (8171 T (HT (61 [T) (B (V). @31

In a similar way we can transform equation (28):
() = ~cp, [B) 181w "} + (81711 " (WT G ITI (B (v} -

T T =1 i
(8] [1] [H] [GI[TI[BI{yv"}, (32)
It is understood here that vector {vi} is defined in the basic coordinate system of the structure for only
the surface grid points and that {y!} is the vector’s counterpart for the total set of grid points. Since it
can easily be verified that equation (31) is the subset of equation (32), we will consider the general
equation (32).

Substituting equation (32) into equation (19), we get

M1} + (K1x} = (B} - ep (11T (A1[T,1{x"} +
(r,1 1A T 61T ) - try 1 Ea T e i D™, (33)

where

[t,] = [T][B]
{x} = {v}.




TR 5821

Direct Analysis. Since we are considering only harmonic forces,

{F } = {F}e®t
e e (34)
{x} = {x}ei¥t
{v.} = {v’?}eimt .
-1 -1
Substituting equation (34) into equation (33), we get
39)

[0 + )1 - sorr ) T o1 ] ) -

T T =1
{F2} - cp [T 1 (ATIT, Hy%} - [T, ] [AJ[H]V(G] [T, }{v%} .
The solution of equation (35) yields the displacement vector { X}, which can be substituted back into

equation (31) or (32) to get the pressure on the surface.

Modal Analysis. The matrix to be inverted in equation (35) is complex, full, and sometimes ill-
conditioned because the terms of the stiffness matrix are large for certain ranges of driving
frequencies. Also the imaginary part of the matrix is small compared with the real part. An alternative
in this situation is to employ modal transformation.

Let [ ¢ ] be the matrix of the desired N modes, and let these modes be normalized so that
(617 (M1[0) = [E], (36)
where [E] is the identity matrix. We know then that

\2 37
01 IKI01 =| ! 2 = °, Gn
2

."A )
. N
Let us use the transformation

{x} = [¢){q}, (38)
where {q} is the vector of the generalized coordinates.

Substituting transformation (38) into equation (33) and premultiplying the resulting equations by
[4]7, we get, using the relations (36) and (37),

(g} + (e} = 1617(F ) - e (0171117 ANIT 1 Mx ) +

(017171 a1 (T Gl [T, (0 1a) -

(017 tr, 1 (a1 w1 61 1T 10w
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Since the forces and resulting displacements are all harmonic, the above difierential equations reduce
to

[P w21 - swtor"tr1 A1 RT o) (7 1001 ] @) =
(61T (F%} - co (617 (T, 1T(AIT 1 {w#) -
T T 51
(0171, 1T tA T G [T 1wt} (39)

where
iwt

{q}
{F }
e

{q*le
iwt

]

{F*le
e

{v;} = (vale™™

The solution of equation (39) will be simpler than that of equation (35) because the matrix is
smaller. Using equation (38) to transform the solution {q*} back to { X}, we get the displacements of
the structure, and from the displacements we get the pressures on the surface of the structure.

Examples. Of the many examples solved, the solutions of two problems are presented here. In the
first problem, as shown in figure 3, the pressure distribution on the surface of the rigid sphere is
calculated for a prescribed velocity distribution. In the second problem, a steel sphere submerged in
fluid and excited by a point load is considered.

The series solution’ of the acoustic pressure on the surface of a point-driven sphere has been
programmed. Fifty terms of the series were retained for thc computation. The results are plotted as a
series solution in figure 4. Two different finite element models of the sphere were considered. The
model used in conjunction with equation (35) represents the sphere by 8 conical shell elements,
whereas the model used with equation (34) represents the sphere by 18 conical shell elements.

The first three modes of the 18 element model were retained for the calculation:. The intention was
to see how well the series solution compares with the Fluid Interacting wiik S:ructures (FIST)
program, in which relatively crude finite element models are used. The agreement among the three
sets is excellent everywhere except in the vicinity of the point load. This is to be expected since even for
a dynamic response of the sphere in the vicinity of the load in vacuo, a more refined finite element
model than the one used here is required.

Application to Computer Programs

The computer program was structured to solve four cases: (1) radiation from a vibrating cavity, (2)
scattering of a plane wave traveling along the axis of symmetry from a rigid cavity, (3) radiation from
a vibrating structure, and (4) scattering of a plane wave traveling along the axis of symmetry from a
flexible structure.
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Also, two types of pressure distribution over the shell along the generator are considered: ‘‘con-
sistent’’ and “‘linear.’’ In the consistent case, the pressure is described by a third order polynomial. In
the linear case, the pressure variation is linear and is described by a first order polynomial. In both
pressure distribution cases, the velocity variation is given by a third order polynomial.

The geometric shape and driving frequency, as well as the variation of velocity and pressure,
determine the coefficients of the [H] and [G] matrices. The size of vector {P_} in the case of consistent
pressure distribution is twice that in the linear case. In the consistent case, the variables are the
pressure and the spatial derivative of pressure at each grid circle. In case (1), for a given velocity
distribution v, the analysis gives the pressure distribution for both the consistent and linear cases.
For the cases considered, the actual magnitude of pressure in the consistent and linear cases varies
little, but since only a few segments are required for the solution, the difference is larger within each
segment, as shown in figure 3. Also, the consistent case agrees better with the known exact solution. It
is estimated that, for satisfactory results in case (1), the length of each segment should be less than or
equal to one-fourth the wavelength of the velocity distribution along the generator of the shell. This
observation leads us to believe that the mesh selected for finite element analysis of the structure will
prove adequate for the solution of equation (14).

In case (2), which is simply the extension of case (1) since the inclusion is rigid, the net velocity {v"}
along the surface is zero. This shows that the scattered velocity {v$} is simply the negative of the
incident velocity {vi"}. The fundamental relation (14) gives the pressure caused by a scattered wave.
Therefore, The observations for case (1) apply as well to case (2).

Similarly, case (4) is an extension of case (3). In case (3), it is observed that for the solution of
equation (35), the available inversion routine does not give a reliable inverted matrix for problems of
a size larger than 20. In this case, it is advisable to resort to the solution of equation (39). The results
obtained using equation (39) for a spherical shell divided into eight segments and driven at a point
compare well with the exact solution everywhere over the sphere except in the vicinity of the point
load (figure 4).

Summary

Analysis of scattering and radiation of acoustic waves from an axisymmetric structure in an infinjte
fluid medium has been presented. It has been shown that the use of a basis function, consistent with
the one used for axisymmetric pressure on the finite surface, yields accurate results and uses fewer

finite surface elements than does piston-type analysis.

16
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Appendix A
Analysis of Axisymmetric Shells

Introduction

Normally, an axisymmetric shell is idealized into a series of axisymmetric conical shell finite
elements. The finite surface elements for the solution of the Helmholtz surface integral are selected
here to be the axisymmetric conical segments. The basis function that defines the velocity distribution
on a conical segment is selected to be the same as the basis function used for axisymmetric conical
shell finite elements.

In this section, the directional derivatives of exp(ikR)/R, which are used in equations (11) and (12,
and their numerical solutions are dealt with, along with the derivation of generalized fluid forces and
the consistent mass matrix.

Main Analysis

An arbitrary pressure and velocity distribution on the surface of the cone can be described in a
series form:

p(s,9) = Z p_(s)Cos m¢ +z P*(s)Sin m¢ (A-1)
m=0 " m=1 "

v(s,9) = Z v, (s)Cos mo +Z v*(s)Sin m$ : (A-2)
m=0 m=1

We will consider the case that requires the pressure distribution corresponding to a velocity
distribution given by only one term of the infinite series, say, v,,(s) cos m¢:

p(s,d) pm(s)Cos mo (A-3)

v(s,9) vm(s)Cos mp. (A-4)

From now on we will drop the subscript m of p,(s) and v, (s), and we will evaluate integral equations
(5) and (8) for an axisymmetric structure, as shown in figure A-1:

ikR ikR

p(x) = Z—,ﬁfA{p(g) 2 - tkoev(x) S Haa (A-5)




TR 5821

#

L
+—

|
v

!
.

{

\
\

Figure A-1. Schematic for Helmholtz Integrals for an Axisymmetric Structure

ikR ikR

2
(p(x")) = E%J{P(ﬁ) Bn—aas_g (&) - tkeev(x) 3%;2- E5
A

9
asi

) 1A

x-x'|} = {(x-xl)2 + (ySin¢-ylSin¢1)2 +

o)
[}

{]x-x!

(yCos¢—leos¢l)2}

{(x-xl)2 + y2 +y12 - 2yyl(Sin¢Sin¢LCos¢Cos¢l)

2

{x-x")? + y2 + y'? - 2yy'cos(¢-o1)}. (A-6)

We will consider that point x ’ is always along the generator of the shell, which implies that ¢’ = 0:
R = (x=x1)? + (y-yD? + 2yyl(1-Cosy) . (A7)

Define the normal derivative:

a . - i l.—a_ i . 4+ 1 C e
o Yn- (irar +-1¢r TS + éx Bx) (ir Sin 6 2x o8 )
3 9 .,
g = Sineg-'-Cose 3%
-
' n
(e}
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Define the tangential derivative:

3 PP SRR S I , .
3, Ve, = GAap * L7 %% ~xax Cos 8 + 1, Sind)
§ a3
yr =—Cos83r+51n85-
[}
t Ne
e
b 4
t.
Since the shape is axisymmetric in the above two formulas, we can substitute y for r:
3 _gng 2 2
Py Sin 6 3y + Cos 6 % (A-8)
3 P ]
a—":;—-COSBay‘FSlnBa (A-9)

Substituting equations (A-3) and (A-4) into equations (A-5) and (A-6), dropping the subscript m of p,
v, and the subscript 2 of t,, and letting ¢ ' = 0, we get

p(s!) = If{p(s) Cosm

ikR

}yd¢ds

L. 2 _ikR 1kR
p’é(sl) = —21? J{{p(s) Cosm¢ 3':1(e R) - ikpcv(s) Cosm¢ 5‘%1‘(9' R

) ydéds .

Assuming that the total surface is made of J conical finite surface elements, we get

p(s ) -Z [‘g I (s '8 )p(s )y(s )ds IIZ(S '8y )v(s )y(s )dS] (A-10)

j=1

L
J
[{) 13(si,sj)p(s )y(sj)ds +f 1,(s ,sj)v(sj)y(s )dsa (A-11)
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where

s; refers to the ith grid circle where pressure is to be found

s; refers to the field point on the generator of jth conical finite surface element 0<s;<L;
¥(s;) is the y coordinate of the field point §;

v(s;) is the velocity normal to the surface of the field point Sj .

P,tz(si) = 5%13 p(si)£= a;:iip(si)t (Note the way the index of t is changed.)

| 1 Ty JikRy;
Il(si,s,) = or —5;;—-( R ) Cosmp d¢ (A-12)
J 2% g
T ikRy;
ikpc e 1]
I,(s.,s.) = - = J- ( YCosmd d¢ (A-13)
2771773 2m ) Rij
ki1 2 ikRy s
1 9 e 1]
Lishs) =% ) ( ) Cosmé do (A-14)
3V77i%7§ PR A anjBti Rij
|y ikR; .
i i
I,(s;08) = - 1‘2‘§° Iszz_ E=—) Cosn¢ do (A-15)
J L i ij
2 S$inb ,s— + Cosf 2 (A-16)
5n n 13y os 9%,
] B B
9 3 ]
=— = - Cosf,z— + Sinb x— (A-17)
Bti :I.3y:l iaxi
‘ 2 2 1/2
Ryy = (G2 )% + (4= )7 + 29y, (1-Cost) } (A-18)

A-4

-
14

;xU
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Polynomial Evaluation

Given the slopes ), ## and the ordinates Y; and Y|, ,, and if the curve is defined by a third order
polynomial

c. +c¢c

2 3
Yy T ot eyt ¥y oYy,

coefficients c, through c; can be determined by the four boundary conditions B}, [J}, Y;, Y;, . (See
figure A-2.) The resulting expression can be rearranged so that

2+2x3)Y +L (x—2x2+x3)8 + (3x2—2x3)Y

2 3
= (1- - (A-19)
v (1-3x AT 3 N LJ_( X +x )Bj+1’
where ‘= 51 )
L
J
Rewritten,
vy = ALY, + AL (2B, + A2, (DY, + A2, ()8, , (A-20)
where
Alj(l) = 1—3x2+2x3 A2j(l) = 3x2—2x3
(A-21)
Alj(2)=(x-2x2+x3)Lj A2, (2) = (-x2+x3)LJ,-
y. = Y. +y Coss> + s Sina> (A-22)
A i“j j h| i’
where
v = 1 + A2 2 =
yj AIJ(Z)Bj j(2)6j (A-23)
A-5
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=45 o (1-axeax)pl 4 (- 2yg2
Bj = dsj v (1-4x+3x )Bj + (-2x+3x )Bj (A-24)

8 =90 + <2 + taniB.. (A-25)
i j j

Velocity Distribution

= W o X &
v(s)) = AL (DU, + AL ()%, + A2, (D, + A2, (D%,
- a1 Y% p ) + {a2.3%D, 3, (A-26)
h| h| b jtl

where W; = displacement normal to the surface at jth grid circle.

« =4 u (13T = {a1,(1), A1, (2)}
j ds, j ] J J
) T
. d
W, = —W A2} = {A2.(1), A2 (2)}
Py { J} J() J()
W,
.J
{p,} ={a,} .
J 3
Pressure Distribution
) = A1, (1)P, + A1, (2)P} + A2,\1)P, . + A2 _(2)P!
P(SJ) J()J J()J J\)J+1 J()J_‘_1
- (a1 7(s.} + {a2.1%0s, ), (A-27)
b j h| j+1
where P, = pressure normal to the surface at jth grid circle.
d
P, =—-—P
d
sj j
If only the linear variation is to be used,
p(sJ.) = Cljpj + c2jPJ.+1 , (A-28)
where
23 |
clj = ]1- T c2. = T (A-29)
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Evaluation of I|(s,, s))

Evaluation of Directional Derivatives

elleJ _ _CoskRij + SinkRij
Rij Rij
3 IelleJ y = 3 /elkklj)akii
dn.  Rij ORij  Rij “on,
J ]
_3:(e1kRIJ) . 3 (ellej)aRi.
3t. Rij 3Rij Rij “at,
i i
ikR1ij co o R
I e = 1 .. . ikRij _ ikR1j
Ri;C Rij ) - RijZ\Rijcike e }
eikRij eikRij
= il - .. . -30
YTRI Rij* (A-30)
From equations (A-16) and (A-17),
T [ . . o:0R1j
8an1J = aijIJ « Cosfj + Sind) 3yj

..  aRid
—Q—Rij= - Coseiél—a%-l + Slne.—gll—

at. 1 9x

1 J

£22 = - 2 - 2 -

Rij (xj xi) + (yj yi) + Zyiyj(l Cosd)

2Ri 2R = 5(x.-x,)
93X, j 1
J
Rij _ XM

9x. Rij
j ]
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.. X.~X.
3R1] - 17
3x. Rij

SRij _ -
RlJ{y v Cos¢}

3y.
yJ
3Rij _ -
T le{y Y Cos¢}
3 eikRij 1kR13 y. y.Cos¢
o ( R ) = (ikRij- 1)——~—7—{COSGJ(—J———) + SlnGJ(—J——-———————)1 (A-31)
j
3 eikRiJ 1kR13 yi-y.Cos¢ X, X,
2 (= LS B inoi — 13, R
at.( R )= (ikRij-1) -—————z {-Cos6i Rij * Sindi R e (A-32)

Simplifying the terms shown below, we get

1kR1J ik 1
(ikRij- 1)————32 = (ﬁzj - ﬁ;}z)(CoskR13+1S1nkR13)
- —rCoskRij- —:SinkRij) + i(=KiCoskRij - L sinkrij)
Rij Rij Rij Rij
_ CoskR;1+kRk181nkR1J kR13CoskR1J—SinkRij
( Rij“¢ ) + i R1_] ) (A-33)
3 ik 1 1kR13 2ik 3 ikRij
BRij{(le §I§3) }={1 k(———z ———3) (- Ri;9 + ﬁ;jv)}e
= {- K2 + ?. —1( )} (CoskRij+iSinkRij)
Rij% = Rij 5

~k2Ri j2 -k?Rij%\ .. ... 3 ..
= {(%—)Coskkij%sinknij} + i{(3—:i—3%1—)slnknu - Rli(—j3CoskR13}

2 _ikRif
9 3-k Ri 3k
anjati S Rij ) [}( R1}% _)C oskRij + Ri33 SinkRij} +

2.2
1{3-kR§;a SinkRij - i%%g CoskRij{]{-(yi-ijos¢)Cosei +
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(xi-xj)Sinei} . j-yi Cosd) SinBj}, (A-34)

Substituting equations (A-30) through (A-34) into equations (A-12) through (A-15) and separating
the real and imaginary parts, we can write

Il(si’sj) = Ill(si,sj)ﬂllz(si,sj) (A-35)
Iz(si,sj) = 121(si,sj)+1122(si,sj) (A-36)
IB(Si’sj) = 131(si,sj)+il32(si,sj) (A-37)
Id(si’sj) = 141(Si’sj)+1142(si’sj)' (A-38)
where
m
_ 1 _ CoskR1_1+kR1_]SinkRiJ _ . _ . A )
111 21 l[r{ Rij3 }[ xj xi)Cosej-G-(yj inosd))SlneJ] Cosm¢dd (A-39)
m
kRijCoskRij~-SinkRij
(S_.S ) _[{ Rijj }
o{ (xj-xi)Cosej+(yj—inos¢)Sinej }Cosm¢dd (A-40)
™
121 Ep_c_f___]_Slnle Cosmg¢dd (A-41)
—T
m
122 = kpC J Q&S}.&}l Cosm¢d¢ (A-42)
i 2.2
_ 1 (f(3-x"Rij")CoskRij+3kRijSinkRij
131 o _ﬂ{ RijS }FI.FZ. Cosmépd¢ (A-43)
¥ 2 2
’zi {s k°Rij )Sinll:li{ji%—BkRijCoskRij} F1.F2. Cosmpdd (A-44)
~T

A-10
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f Fl = (xi—xj)Sinei-(yi—ijos¢)Cos61
F2 = (x J.-x i)Cost-’-(yj-inosct))SinGj
1 Ep_c le_-]CoskRu SinkRij
41 f Rij>
. {(xi-xj )$indi-(y,-y,Cos$)Cos i}Cosm¢d¢ (A-45)
T
;= _ ke p CoskR1_1+kR13$1nkR13]
42 2m Rij> f
{ (xi—xj)Sinei—(yi—ijosti))Cose i} Cosm¢pdd . (A-46)

Assumption [. Consistent Pressure Distribution

Substituting the integrals I, through I, and equations (A-26) and (A-27) into equations (A-10) and
(A-11), we get

J
plsp) =2 (611,51 0, Wic2(1, 1" 0,
i=1
+{H1(i,j)}T{Sj}+{H2(i,j)}T{SJ.+1}] (A-47.1)
J
P, (s) = pIRCEIEMIRA b} +feadd, pi D547
j=1
T T
+ LD P s FHAE,D Y (S, . (A-47.2)

The two preceding equations (A-47) can be combined in one matrix equation:
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a1, NIT te2¢a, 17| { 0.

J
{s.}=2,
o= T {caci, 1T} {p,.,}

1 {G3(1,1)} 41

- -

1, »YT 2,917 (s}

' i
3, Y (w7 [1s,,)) (A-48)
- ) ’
wherei = 1,2,...(J + 1)
i=1, 2, .. .J+1)
L
{G1(i ')}T =fj 1,(s,,s.)y(s,){Al }Td (A-49.1)
. PN S I LA M '
L,
{c2(1 j)}T = ’ I.(s,,s. )y(s,){A2 }Td (A-49.2)
’ P INE Y LA Mt M
L
{c3i, I’ = ! I,( ) {a1.}7%4 (A-49.3)
) _fo 4 (5p25y)y (s TAL 1 ds, '
L5
T L T A-49.4
{G4(1,)} j; 105,08y (s,)(82,} s, ( )
L5
T _ T ]
{H1(1,1)} -j; Il(si,sj)y(sj){Alj} ds, (A-49.5)
L
{H2(4 j)}T = 3 1,(s,,s,)y(s,){A2 yla (A-49.6)
’ fo 1774755778857 10% 7 985
L
T T
(13(1,9)} =J(') 13(s;28))y(s) a1} s, (A-49.7)
Ly
T T
H4 (4, = , R .
{4 (4,1)} j(') Ly(s,8,)y(s,) {42, } ds, (A-49.8)

A-12




Equations (A-48) represent 2(J + 1) equations, which are written in matrix form as
[E){s} = (G){D}+[H]{(S},

where

"[E] is the unit matrix, (2J + 2) size
[G), {H] are complex square matrices, (2] + 2)size

{S}, {D} are the vectors of generalized pressure and velocity, respectively, of (2J + 2) size.

Assumption 2. Linear Pressure Distribution

Substituting the integrals I, and I, and equations (A-26) and (A-28) into equations (A-10), we get

J

T T = =
p(s,) =};J{c1(1,1)} {Dj}+{G2(i.j)} {Dj+1}+ﬂl(i,j)Pj+H2(1,j)Pj+1:| , (A-S1)

where L
3
- = 1
A1(4,3) j; 1)(s458.)y(s,)c) ds,

L

_ 3
f2(1,1) =j; I (sg,8,)y(s)c2 ds

where

The total of (J + 1) equations (A-51) are written in matrix form as
(E}{p} = [G]{D}+[H]{P},
where
[E] is a unit square matrix of [J + 1] size
[G] is the complex matrix of (J + 1), (2] + 2)size
[ﬁ] is the square complex matrix of (J + 1) size

{P} is the vector of pressures, (J + 1)size

{D} is the vector of generalized velocity of (2J + 2)size .
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(A-50)

(A-52.1)

(A-52.2)

(A-53)
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Numerical Integration

It is apparent that the integrals (A-40) through (A-47), (A-49¢i(i = 1,8)), and (A-52i(i = 1,2))can
be evaluated only by using some numericai scheme. Here the Gaussian integration formula is used
because the integrands are analytical expressiuns, which makes it easy to calculate their values at any
required point, and beccause the number of calculations to be performed for a required accuracy are
fewer. The Gaussian integration method reduces the integral to the summation of the weighted values
of the integral at the preassigned number of points. The Gauss-Legendre integration formula is ex-

pressed as
1 n

J oy % Ay, (A-54)
-1 i=1

Points x; and the corresponding weighting function A, are given in standard references on numerical
analysis. The integrals (A-49) and (A-52) are not in the form of equation (A-54); as a result, the in-
tegrals require transformation. The above integrals are in the form

L
f f (s)ds.
Let 0

L 1

s = E(Hs ), (A-55)
which transforms the above integral to
1. 1 n
_L L1yalyygel = L Lo )

'{ f(s)ds = 2’—/; f£(5(1+s))ds Z;IAif(?(Hs ) (A-56)

Since f(Rij(¢)) and cos m¢ are both symmetric, integrals (A-40) through (A-47) have the following
property

m ™
f f(Rij(¢))Cosmpdg = fo(Rij (¢) ) Cosm¢d¢ .
-1 D!

In order to use the Gauss-Legendre integration formula for an alternating integral like the above,
we should first reduce the integral to the sum of the integrals over each wavelength and then use the n-
point Gauss-Legendre integration formula over each of the subregions:

m m i
2ff (Rij)Cosmdpdd = 22 f(Rij)Cosmddd .
0 i=1 .
—(1-1)
m

813

Let

b= (P - 141/2)2, ¢ = 5 (W42i-1).

A-14
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Then
m
m 1
J(.f(Rij)Cosm¢d¢ =-£:‘/~f(Rij(W)) Cos(%(w+21-l)dw,
T(i-1) -1
where
T m 1 m n
ff(Rij(cp)) Cosmpdd = 9 ;n’[f £,W)dy STy AL ()
- i=1 Y1 i=1" j =1 1t J
where
£L009 = f(mj(wj»cOs(g (b ;+2i-1)).
In this analysis we have used n = 2; therefore,
T m
, - us -
| £(R1j($) Cosmpd¢ = 221 — (AL (W)HALE (D)), (A-57)
for which
A1 = A2 =1

¥, = 0.57735027

¥, = -0.57735027

¥, T
(7 + 1-1/2) = - (i-.21132487)

-RE-RE]

v, T
(T + 1-1/2) = o (1-.788675).
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Generalized Forces

The acoustic pressure distributed over each finite surface element has to be expressed as the joint
forces {Fy,}, as shown in equation (16).

Total virtual work equals " (L

s p.8u ydéds

=2 {QI™ s + Q2mg =™ +QI™ s + Q2"sx.™) 4
.0 Ql ) Ql ] Qz I+1 Qz 41

o * emk * . ¥ * ek * .
FQI™ 6i™aq2™ 67« ™aqI™ W + 2™ (A-58)
j o i 1 2w

Substituting equdtions (A-1) and (A-2) into equation (A-58), using the relations of equation (A-26)
and
b

/ Cosm¢ Cosnddd¢ = endmn
-1
I Sinm$ Sinnéd¢ = emdmn
-7
/™ sinmé Cosn¢ d¢ = G
-
= (2 m =0
where ¢ {1 m 70

and then comparing the coefficients of the like virtual generalized displacements, we get the ex-

pressions for the generalized forces, as shown in figure A-3: (Note that superscript m is dropped and j
is added.)

Qlj= gnflﬁm(s)y(s)Alj(l)ds
o

Q- en/B, (s)y(a)Al (2)ds
o

qli= enf%m(s)y<s)Azj(1)ds

2 o

ZJ‘ L
Q2 = enfpm(s)y(s)AZJ.(Z)ds. (A-59)
o




R o)
a*;n\

oM
Wi

Figure A-3. Generalized Coordinates

TR 5821

A-17




TR 5821

In the above equations, the only assumptions we have made concern the velocity distribution, given
by equation (A-26), and the definition of the positive direction of the velocity and pressure (along the
outer normal to the surface). Although the generator of the axisymmetric segment is shown to be
straight, equations (A-59) admit any variation of y, straight or curved. No restriction on the pressure
variation of the axisvmmetric finite surface is imposed in equations (A-59).

Depending upon whether the pressure distribution is consistent (equation (A-27)) or linear
(equation (A-28)), one can analyze the integrals of equations (A-59) exactly if the analytic expression
for y(s) is available (e.g., the generator is straight) or numerically if y(s) is arbitrary. In the analys:s
that follows, the generator of the segment is assumed to be straight, which means

y(s) = ClJ.-Yj+CZJ.-YJ.+1. (A-60)
Ct,, C2;are given by equation (A-29).
Assumption 1. Consistent Pressure Distribution
As defined previously,
1
p (s) = Al,(1)P.+Al.(2)P.+A2.(1)P. 1
m ] ] ] ] J( ) J+1+A2j(2)P'+]
= (a1 7s.) + (a2.1 s, (A-27)
j J i e
Substituting equations (A-60) and (A-27) into the integrals of equation (A-59), we get
' B ' . ! ‘1 v
f .3 2, 3 2y Y . 9L 2 [y Y i )
i Q! LysY.+=Y. ) Lo 3+ 1) 705 [Y.+y. Lo 3+ Tget)ife,
1 A7) 35 5+1 J§'§] 60);W<J J*‘l)‘ i\ g0 70 )| b
. 3, i
P2 2[Y. Y. Y. Y. 2 Y. Y. L
‘QIJ Lol j+l LJ, i1+ gl LJ. _j+ g+l I————l Y, i P pl
! ( 28 60 168 280 70 60 J - 280 i
‘)‘ 1] r=€" 9Lj 2{Y Y 3 2 J 2f Y Y ﬁ 7
) Q.7 2l My sy, R I T A=A Y Rt 1 S
,QZ 140( j 3+l ] 7-(])- —%0— 3 3573 7 3+ j -64(])- —%8— 3+l
. 3 i
‘ 2] 2 (Y. Y. . L. 21Y.. Y. ' 3f(Y. Y. 1
i Q -L. 1, i+l - 1 JY.+Y. =Ly 3+ 3+#1) Lo g3+ g+l P, .
w2 | ) <60 70) g0\ 1 Yl I\so 28 ) | I\ 780 168 I J”) X
(A-61)

As explained in equation (17), the above matrix for the jth element can be transformed into the basic
coordinate system, so that the total matrix can be built from these element matrices. Here, however,
an alternative approach is taken to write explicitly the total matrix. At the jth node point, we can write
the following relation:

A-18

.~ o~

s ovin e s e 1 T s R OV
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) {
X} \
yi~

j

(A-62)

Substituting equation (A-61) into {(A-62) and rearranging the terms, we can write

. . ) ) 1 )
Q . = A(33-2, 2j-3)P, _+A(3j-2,2j-2)P. _+A(3j-2.2i-1)p.
vi j j -1 j j i-1 j i ;

1
+A(3j-z,zj)p§+A<3j—z,zj+1>pi+1A<3j—z,zj+:)vt+1
] N ]

L
1}

. . . 1
. A(3j-1,2j-3)P +A(33-1,2j-2)P, +A(3j-1,2j-1)P.
xi J ] j-1 J ] i-1 ] ] 3

. Syl . . . 1
+A(3j-1,27)P, +A(3j-1,27+1)P,  +A(3j-1,2j+2)P, -
J 17 ] ] 4l 1 ] i+ (A-63)

_ - . i oypl —
Q3j = A(3j,2] 3)Pj_1+A(3J,2J 2)Pj_1+A(3Jy~l 1)pi

ol . ]
+A(3J,2J)Pj +A(3J,21+1)Pj+1+A(BJ,¢J+_,ri+1

A(3j-2,2j-3) = — Z, Y. + Y,
=2, i-1(Yi-1 T Y)

. Y. Y.
A(3j-2,2j-2) = Lj—lzj—1<—l:1 + _1>

A(3j-2,2j-1) = 35 zJ_1 5-1 7YJ(Zj_1 + zJ) * 35 2V
. . Y Y, Y. Y

A(3j-2,25) =-L .z, [Yi-1 + Yj)+ L.z, ( j+1
e i1 3'1( %0 Eé) 35 *+ 4o
2 2ie1) = 2

A(33-2,2j+1) 40 Zj(Yj + YJ+1)

A(35-2, 2j+2)=-L.Z.(Ii + Yj+1>
I N 770
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: . =9
AG3i-1, 2§-3) = 1= < . YJ)
AGi1, 25-2) = LR fY51 4 Yy
b1 70 60
. . _3 2 \ !
A(3j-1, 25-1) = 35 - 1 5-1 + 35 YJ(kJ + Rj 3¢ ij+1
. . . Y. Y.
A(33-1, 23) '-IR'-I j-1 + jY+ L.RJf §+ j+l
37 60 28 J N\ 728 60
: . =9
A(3j-1, 2j+1) = 140Rj(Yj + Yj+l>
. . _ Y. Y.
A(33-1, 2j+2) =-L.R.f j + _j+1
3 N0 70
A(33,23-3) = - Lg_l Yj-l + KJ_ em
J 60 70
. 3
A(33,23-2) = -L Y. + Y.\ enm
3,2] Lot (Y51 5
280
a35,2j-1) = (=12 (Vg + Vi) e nd (Ve Yin ) der
J 60 28 J\28 60
) Y,
A(3§,2§) =@l (i o Yy Y 2 n(Y + DnYten
37\ 280 168 N\168 280
aG3j,25+0) = Y5 + Yyeaen
N70 60

3
L
A(33,2342) =] (Y. + Y, em
e 780 ( J J”)
where Rj = egrL.Sin*
Zj = enL.Cosm2

A-20

(A-64)




-]
F-l
(7]
o -]
(%)
—

Writing all the generalized forces Qxj, Qyj, Q3j (j = 1-J) as a vector, and using the relations of
equation (A-63), we can define the following relation:

(R} = P {s}, (A-65)
where
r N r N\
%1 51
1
le Pl
P,
Qs
(F.} = 4 ) }
(s} =
QxZ 3
Q%5 | ux1 pl | 2ix1
L 3
=y

Matrix [A] ;5 , 5; is highly banded and its coefficients are defined by equation (A-64).
Assumption 2. Linear Pressure Distribution
As defined previously,
p,(s) = 01jpj + CZij+

1 (A-28)

Substituting equations (A-60) and (A-28) into the integrals of equation (A-59), we get

F 1) - Y

1j 4 LR Y. o\ T

4 s (3 s (g ) | [
\
Qij L% L__ + Yj'rl L% :Il + Vi P
I\ 30 60 I\ %0 60 j+1
ﬁ > =€

1j Y, Y, Y.
Q L.{_] + _j*l L.{] +4¥Y,

2 ] (15 12 1 Y
o3’ L} (-f; - Y...j_+1.> 45 ( Y.i+1> (A-66)

60 J
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Substituting equation (A-66) into equation (A-62) and rearranging the terms, we can write

]

. = A(3j-2,3-1) P, +A(3j-2,7)P.+A(3j-2,3+1)P.
Q; i-2,j i-1 j J)J (3j-2,3 41

]

. = A(33-1,3-1)P, _ +A(3j-1,7)P 4A(3j-1,i+1)P.
Q; i=1,j i1 i-1,j j+A( i-1,j i+

1

Q3] = AG3j,j-DIP, +A(3], )P, +A(3],J+ 1P, (A-67)
2,50 =z, (YL ¢ Y
i A(3J > ] j—l( 15 12

Y
. . _ Y. J4 Y. + 3+l
A(3§-2,5) =2, <_i_l * 3~Yj> * ZJ<—— ‘*L">
) Y. Y.
A(3j-2,j+1)= Zj (_J. + ¥l
A(3j-1)J—1)= Rj_l

Y.
. . Y. (4 Y., + 1+1
A(33-1,3) = R. 1 <_J:l 4 Yj) t R <i~ j )

15
Y. Y.
AG33-1,3+D)= R, <_1 + Jil)

12 15
2 Y. Y
j,j-1) = -eml’ -1+
A(33,] j-1 <‘%o— 60
Y
2 Y. + 3+l
.. = - 7L -1 + emL N R ot 1
A(35,3) m5-1 ( 0 7 (30 60
A3, i+ = em? (Y5 o Yie1)
1 \%0 60
/
R. = -enlL, Sinzm.
j 3 j
Z, = gL, Cosza. . (A-68)
j j j

A-22
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In the matrix-vector notations, the generalized forces given by equation (A-67) are written as

{F} = [A] {p}, (A-69)
where

r 3 r 3
%1 1
le PZ
Q3 4

= = y

{Ff} —{ ? {r}

Q) P,
e | 3]

Matrix [A] 35 , ; is highly banded and its coefficients are given by equation (A-68).

'i A-23/A-24
Reverse Blank
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e Appendix B

Analysis of an Incoming Plane Wave
at an Angle to the Structure

When a plane wave impinges on a surface, the component of the incident plane wave norma’ to the
surface scatters off the surface. Simultaneously, because of this acoustic pressure, the structu.=, if
flexible, vibrates and radiates acoustic waves. (If the structure is rigid, this vibrating radiation
component is absent.) The net acoustic pressure is the sum of the incident, scattered, and radiated
components. Often the scattered and radiated components are lumped together in the total scattered
wave.

Distribution of the incident velocity of a plane wave normal to the surface along the circumference
of a circle is expressed in a Fourier series. We obtain the total scattered pressure due to this incident
velocity distribution and then add all the components (incident, scattered, and radiated) to get the
total acoustic pressure.

The particle velocity of a plane wave traveling along the negative y, direction is given by

i_ (ky —wt
v -1?1 v Iy ut), (B-1)
where -i-Yl is the unit vector along the y, - axis. We will drop e-i*t from the analysis that follows.

We can write the transformation of y, into x-y coordinates as

yl = (y—yo) Cos= - (x-xo) Sin«x, (B-2)
As shown in figure B-1,
y = r Cosé. (B-3)
Y ¥
x ]
ol
)'4
(xo' E’o)

' vVt
Figure B-1. Definition of Incident Plane Wave With Respect to Axisymmetric Structures
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Substituting equation (B-3) into equation (B-2), we can write

ejky1 - ejk(xOSint-yoCos«) 'ejk(rCos¢Cos¢)

,e-Jk x Sine. (B-4)
For a given x,,y,, <, let
C = e_'ilc(xOSinﬂc--yoCose:) . (B-5)
Also, we can expand! the second terms of equation (B-4) into a Fourier Bessel series:
oJkrCos= Cost _ 3 ¢ 3™ J_(krCos«) Cosms, (B-6)

m=0

where
. 1 ifm=o0

m 2 ifm#*+o.
Substituting equations (B-5) and (B-6) into equation (B-4) and then into equation (B-1), we get

i_ -jkxSin=, & M
V= iy_lVO.C. e T €] Jm(erosa) Cosmé ). (B-7)

=0

We will derive the expression for Vin, which is the component of incident velocity normal to the
surface:

in_ 1 _
V7=V .n=A _i;y .n
1
where A is given by equation (B-7) to be
= | _-jkxSinx n - )
A=V Cle mgo €] Jm(eros ) Cosm¢ . (B-8)

We can express the unit vector jyl and the unit normal to the surface n in x-y basis as

i = Cosxi - Sin=i B-9
i, = Cosei, - Sinef (B-9)

n =-SinG)1..x + CosGCos¢1y+ CosOSin¢;z , (B-10)

which gives

i +n = Sin= Sin® + Cos® Cos=Cosé¢ .
RS (B-11)

Substituting equation (B-11) into the above expression of Vin, we get

in

V" = A{Sin=Sin® + Cos=CosGCosd}, (B-12)

where A is given by equation (B-8).
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In the following, we will try to simplify the expression (B-12):

€ j ot (erosw) Cosuw‘l

{Sin= Sin® + Cos= CosO Cos¢}
~jkxSin= ¢ ] ‘

= Sin= SinG e m¥o € gl I (krCos«) Cosm¢ |
- !
+ Cosx Cos® e jkaiano Emjme(erosc)%{Cos(m-Fl)‘i’ + Cos(m-1)¢). 4

Rearranging the terms, we can rewrite the above as

vie - §=o mJ {A (r,x,0)Cos(m-1)¢ + B (r,x,0)Cosm¢ + A (r,x,0)Cos(m+l)¢}
Ve (B-13)
A (r,x,0) = 2 Cos0OCose= e-jkain J_(krCos<)
m 2 m
B (r,x,0) = V_C Sin6Sine e"jk"Si“‘Jm(eros«). (B-14)
We rewrite equation (B-13) as
in s
VT o= (B + 1A + 2 23" % w1 " At Jnm{ Cosmé . (B-15)
Next we derive the expression for d/(ds)Vin by differentiating equation (B-13):
d.,in e d
ds' “mfo Cnd ms ds Am) (Cos(m-1)¢ + Cos(m+l)¢) +4 s (Bn) Cosm( . (B-16)
By the chain rule,
d & 3 L3 3
ds 38 ox 28 or
but x r
38 Cos® and 38 Sin6 .
d
ds Cos® — + Sin(}a-;

We will use the following relations:

jb:Sin¢ =jkxSin«

a < Jm(erOS“)

J (erosc)g = kCosx e

' ;e'j“"s‘““Jm(urcoae)f = keos= ¢ XS (1 goeey,
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where i '
1_1 ,
3t ng_l(eros") - 34 (keCos=)] (B-17)
to get 1
ve
Al = 4 A = —2 Kk Cos6Cos« e‘jhsm‘t
m ds m 2
)—jSinaCoseJm + CosasmOJii (B-18a) i
- « i
B! =-9B = v Ck SineSine e 31 510
m ds m o
{-;jS:lne:CosG)Jm + Cos¢SineJ:'}- (B-18b)
We rewrite equation (B-16) as
d  in _ (.1 il @ u-l (.1 1 1
as v ; ot 234.\1 +§=1 23 {Am_l -A Lt jnmf Cosm¢ - (B-19)

Case 1. Wave Traveling Along Axis of Symmetry

The expression of the velocity Vir and the rate of change of velocity V'in €30 be obtained from
equations (B-15) and (B-19) by substituting « = -90°. which will align the y, - axis with the axis of

symmetry:

A =o0

n

Bm=o0 if m = o

-voejk("""o)sme if m = o.

Similarly

Al = 0

m <

, o if m#$ o

B = Tk (x-x0)

m " | -3kv e Sino if m = o.

In the above expressions, properties of the Bessel function

Jm(o) ___go ifmé$o

are used. 1 ifa=o

Expressions (B-15) and (B-19) reduce to

- - o Jk(x-x,)
Vm Bo Vo Sino e o

4 v, = Vi, = BL = kv _staoe’k(x%0). (B-20)
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Case [1. Wave Traveling Normal to Axis of Symmetry
If x = o, the y, axis coincides with the y axis, and we can get the velocity distribution for a wave
traveling along the -y axis. If we want to consider the wave traveling along the + y axis, we have to use
« = ]180°,
In the following we will consider the « = [80° case.
\)
o - —2 - m jkyo
Am 3 CosO (-1) e Jm(kr)
B, = 0
Al = 22 1 Sinocoso e I¥Y0 1 (~kr)
n 2 m
B =0
m
o« m«ul
v, =23 + 5 2 (Am_l-A Ml) Cosm¢
Vl = 2] 1y by 2jm-1 Al -Al Cosm¢ (B-21)
in A1 m=1 m-1 “m+l '
B-~5/B=6
_'_ Reverse Blank I

i C- 8 wupayp. Fou RN TR bt et ey
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Appendix C

Analysis of Scattering of the Plane Wave
From Rigid and Flexible Structures

The net component of the particle velocity normal to the surface V" is equal to the sum of the
normal component of the incident velocity and the scattered velocity.

L (!i:tz) n+v° (C-1)
where

v* =V, vhn = vin (C-2)

v® = v

Vo= vim g s,

Scattered components of the pressure and the velocity, p* and Vs, respectively, satisfy the linear
algebraic counterpart of the appropriate boundary value problem? of the Helmholitz equation:

[u] (#°} = [6] {v°}. (C-3)
Incident velocity and pressure, vi and pi, respectively, are related as follows:

i i i
+
PP T o v _ ol

. : (C4
x~—--#+~——4- i f ot 3x

For harmonic velocity, equation (C-4) reduces to
PI(x,t) = - ep Vi (x,b). (C-5)

The total acoustic pressure at a point is the sum of the total scattered pressures and incident
pressure given by equations (C-3) and (C-5), respectively.

Substituting equation (B-23) into equation (B-24), we get

{p} = (pl} + n]‘l [c] g{v“}-{vi“}i
p = -cof{Vi} + [n]'l [c] - [H] -1 [c] vity. (C-6)

Note that in the above step we constructed the matrix vectors from the set of scalar equations (C-2)
and (C-5).
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Case 1. Rigid Structure

If the structure is assumed rigid, the normal velocity {V®} of the structure is zero, and equation
(C-6) reduces to

(P} = coglv'} - [n]‘1 [c]{vi“}, C-7)
The listing of the computer program uses this set of equations.
Case I1. Fiexible Structure
The equations of motion ?f the finite element model of the structure are written as follows:
[u] (0+[K]{x} = (F}+[A] {5} (C-8)

Substituting equation (C-6) into equation (C-8) and noting that the vector {V"} is related to the
vector {X}, we can rewrite equation (C-9) as

[M] (X)-[A] (8] (6] (X 1+[K] (X} = {E}-co, [A] (V'}-co, [A)[H] ~'[c] (v'™} (C9)

without introducing the transformation matrix relating the vectors {).(} and {Vn}.
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